【兴大报告 Xing Da Lecture 552】
发布时间:2018-09-28 来源:北大化学
题 目:Phosphorus-Element Bond-Forming Reactions
报告人: Prof. Christopher Colin Cummins
Department of Chemistry, Massachusetts Institute of Technology, U.S.
时 间:2018年10月12日(星期五)下午2:00
地 点:化学楼A204/206
主请人:席振峰 黄闻亮
报告摘要:
White phosphorus (P4) has been the traditional entry point into phosphorus chemistry. The thirteenth element to have been isolated, it can be oxidized with elemental oxygen or chlorine, or reduced in a variety of ways. We investigated its reduction using early transition metal systems and breakdown to produce complexes with terminal metal-phosphorus triple bonds. Such terminal phosphide complexes possess nucleophilic phosphorus atoms, paving the way to new phosphorus-element bonded systems. This opened the door to the study of reactive diphosphorus molecules, the naked P2 molecule being otherwise a high-temperature species. Subsequently, it proved possible to deliver P2 into organic molecules using photochemical “cracking” of white phosphorus, the P2 serving as an effective dienophile with 1,3-dienes. An alternative pathway to the generation of unsaturated, P-containing reactive intermediates is through the use of anthracene as a delivery platform as illustrated for aminophosphinidenes, the interstellar molecule HCP, and diphosphorus. The raw material serving as a phosphorus source for global agriculture is not white phosphorus, but rather apatite in phosphate rock. White phosphorus is made in the legacy “thermal process”, accounting for ca. 5% of global phosphate rock consumption but ca. 30% of the energy utilized in phosphate rock upgrading. Now we are seeking routes to value added phosphorus chemicals that leverage the “wet process”, in which phosphate rock is treated with sulfuric acid en route to phosphoric acid and phosphate fertilizers.
Christopher “Kit” Colin Cummins是麻省理工学院化学系Henry Dreyfus教授,杰出的无机化学家,美国国家科学院和人文与科学院院士。曾获美国化学会纯粹化学奖(the ACS Award in Pure Chemistry)、美国化学会无机合成化学奖(the ACS F. Albert Cotton Award in Synthetic Inorganic Chemistry)等重要学术奖项,现担任英国皇家化学会的旗舰杂志Chemical Science的副主编。Cummins教授已经发表了180余篇论文,总引用数超过8000,h-index达到51。
Cummins教授一直致力于磷族元素的活化,合成新的无机试剂,寻找更绿色经济的化学合成路线,从而推动人类的可持续发展。他早期的工作聚焦于金属与磷族元素形成的配合物的合成与反应活性的研究:发现了三配位的钼(III)配合物可对氮气分子进行还原裂解并生成钼氮三重键(Science 1995, 268, 861–863);合成了钼磷三键的配合物并对其结构与反应性进行了研究(Angew. Chem. Int. Ed. 1995, 34, 2042–2044)。在此基础上,他的课题组报道了首例常温下合成P2分子的反应,并研究了其中磷磷三重键的反应性(Science 2006, 313, 1276–1279);随后,他利用前过渡金属配合物合成具有类白磷结构的三磷化砷分子(AsP3)(Science 2009, 323, 602–602),以及利用P2配合物合成了具有芳香性的三氮化二磷离子(P2N3−)(Science 2015, 348, 1001–1004)。近期,他的课题组报道了通过三偏磷酸盐合成一种全新的含磷阴离子并以此作为制备各种含磷化合物的前提。这一全新合成路径规避了高能耗、剧毒的白磷中间体,是通向绿色化学的重大跨越(Science 2018, 359, 1383–1385)。
Cummins教授在二氧化碳和氧气等小分子的活化领域也建树颇丰:钒(V)的氮化物可以将一氧化碳转化为氰酸根离子(J. Am. Chem. Soc. 2009, 131, 446–447),而结构类似的铌的氮化物则能把二氧化碳还原为一氧化碳(J. Am. Chem. Soc. 2010, 132, 2169–217d1)。他的课题组在f区元素化学中也有很多杰出的工作,特别是铀的配位化学上:铀-元素多重键的配合物的合成,如双氮桥联的铀钼配合物(J. Am. Chem. Soc. 1998, 120, 5836–5837);铀的芳烃化合物,如具有反三明治型结构的芳烃桥联的铀配合物的合成(J. Am. Chem. Soc. 2000, 122, 6108–6109;J. Am. Chem. Soc. 2002, 124, 7660–7661)等。他曾撰写综述,回顾了铀化合物作为催化剂的历史并展望了其前景(Nature 2008, 455, 341–349)。
13611330937