北京智源大会圆满闭幕,展望AI发展现状及趋势

发布时间:2020-06-28   来源:北京科技政策宣讲团


6月24日,为期四天的2020北京智源大会在线上圆满落幕。来自20多个国家和地区的150多位演讲嘉宾,和来自50多个国家、超过50万名国内外专业观众共襄盛会。
 
北京智源大会是北京智源人工智能研究院主办的年度国际性人工智能高端学术交流活动,以国际性、权威性、专业性和前瞻性的“内行AI大会”为宗旨。2019年举办了首届大会,今年为第二届,主题是“人工智能的下一个十年”。在全球抗击新冠肺炎疫情的特殊时刻,2020北京智源大会全程采用线上形式召开,与包括5位图灵奖得主在内的世界人工智能领域顶尖专家学者们通过视频相聚,共同探讨未来十年人工智能的发展走向,大力推动AI领域的国际交流合作,发挥AI抗疫的支撑作用,凝聚全球战“疫”的强大合力。
 
在开幕式、全体大会、闭幕式以及19个专题论坛上,大会出席嘉宾们就人工智能理论、技术和产业应用等方面,结合面临的机遇、挑战和发展趋势等发表了一系列前瞻洞见。





AI整体发展现状及趋势




本次智源大会上,与会专家一致认为,未来十年,全球人工智能领域的专家学者将着力推动从专用人工智能(弱人工智能)向通用人工智能(强人工智能)的跨越式发展,并研究解决人工智能发展过程中面临的重大难点与挑战。其中,作为人工智能过去十年中的标志性成就——深度学习,它的发展脉络和以及所面临的挑战也是与会专家们讨论的焦点。
 
1. 国际顶尖科学家针对深度学习现有问题开展探索性、开创性研究


1995年图灵奖获得者曼纽尔·布卢姆(Manuel Blum)因计算复杂性理论及其在密码系统和程序检验中的应用而获奖,他在AI方面的研究主要聚焦在通过计算机模拟人脑认知和信息处理过程,结合了认知神经科学、计算机科学等,在认知计算领域具有开创性。本次智源大会上他重点介绍了一种新型的可用数学建模、可计算的机器认知模型,以帮助机器拥有意识,未来他还将在推动机器自主意识方面开展更深入的工作。

 
2007年图灵奖获得者约瑟夫·斯法基斯(Joseph Sifakis)因提出对人工智能模型的自动化检测方法而获奖。他在机器学习领域的研究主要集中在提升机器学习模型的可解释性,从理论层面进行分析和论证。在本次智源大会上,斯法基斯介绍了通过数学算法验证人工智能模型可信度的方法,能够推动人工智能模型在医疗、金融、国防等具有高安全性要求的领域应用落地。他认为,未来的可信人工智能应融合数据驱动方法和模型驱动方法,组成复合型系统。
 
2011年图灵奖获得者朱迪亚·珀尔(Judea Pearl)因在人工智能概率和因果推理研究方面取得的杰出贡献而获奖,他在人工智能领域的研究主要聚焦贝叶斯网络等结合因果推理与概率计算的人工智能算法,相比深度学习技术,能够更好地解释人工智能形成决策的原因,并将人工智能从以预测为主的应用拓展到决策与反思(即对可能情况的认知和判断)层面,具有较高的研究前景。在本次大会上,珀尔介绍了在因果推理领域的最新研究成果,推动机器因果推理从定性分析进入定量分析阶段,是人工智能、机器学习从数据驱动的统计关联分析向因果推理的一次范式转变,在思想和方法上具有变革性,为不确定性推理、决策等提供理论基础,被认为能够较好地解决机器学习可解释性不足、推理结果不可靠的问题。珀尔认为,机器因果推理目前还在不断完善和发展中,将其思想和工具用于处理复杂的预测、决策、推理等问题,是未来发展的重要方向,能够有效解决大数据环境下高噪声、高维度、弱先验等条件下的因果推理难题。珀尔称人工智能研究将很快迎来一场“因果革命”,为通往第三代(前两代分别为专家系统和深度学习)强人工智能提供了重要的理论途径。
 
LSTM(长短期记忆网络)提出者尤尔根·斯米德胡伯(Jürgen Schmidhuber)回顾了一系列基于LSTM的深度神经网络模型在病毒传播分析、药品设计、蛋白质折叠预测、医疗图像识别,以及语音识别,机器翻译等方面的应用,强调说明LSTM是一种通用目的模型。尤尔根·斯米德胡伯教授提出了其对AI未来的愿景:具有好奇心的人工智能,能够自我设定目标、自我学习、自我提升、实现目标,同时进一步讨论了机器学习技术如何通过自学习和强化学习等方式获得通用智能能力。
 
2. 人工智能应在技术发展的同时兼顾数据隐私保护


深度学习的发展依赖大规模训练数据提升模型的性能(精度),但收集大量数据会凸显数据隐私保护的问题。与会专家普遍认为,应在技术发展的同时兼顾数据隐私保护。智源研究院学术顾问委员会主席、清华大学张钹院士建议从两方面开展工作,一是建立健全数据隐私保护的相关法律法规,二是发展安全、可靠、可信和可扩展的人工智能技术。智源研究院学术顾问委员会委员、北京大学高文院士认为,应在借鉴欧美隐私保护模式的基础上,发展具有中国特色的治理模式,通过建立社会诚信机制,减少数据滥用。微众银行首席人工智能官、香港科技大学教授杨强认为,探索联邦学习等能够兼顾数据隐私保护和AI模型性能的新算法,可以进一步激励我国AI技术创新,形成基于新算法架构的人工智能范式。
 

AI重点领域发展现状及趋势




在研究方向上,智源研究院自2109年开始设立人工智能的数理基础、机器学习、自然语言处理、智能信息检索与挖掘、智能体系架构与芯片五大方向,目前正在组织凝练认知神经基础、决策智能、机器感知等新方向,本次大会上,围绕这些重点前沿研究方向,设立了多个专题论坛开展针对性研讨。

1. 智源研究院已布局的5大研究方向发展现状及趋势


(1)人工智能的数理基础


深度学习的可解释性、鲁棒性等问题仍是人工智能理论研究及应用落地面临的挑战。近年来,以深度学习和强化学习为代表的人工智能方法取得了颠覆性进展。与此同时,研究者们一直希望从理论上解释为什么深度学习能在各种应用场景中取得良好效果,如何从理论上保证深度网络的稳健性。本次大会“人工智能的数理基础”论坛参与专家一致认为,近年来以数学和统计学为基础的深度学习理论研究对假设要求很强,往往不符合实际情况,离真正揭示深度学习工作机制还有很大距离。尽管对深度学习的理论分析已经使用了一些数学工具,但目前仍缺乏一个统一的数学理论框架来对数据分布、模型结构以及学习方法的交互作用进行分析,对深度学习本身存在的缺陷以及改进方向也需要进行深入剖析。
 
人工智能的数理基础研究给多领域多学科的融合发展提供了机遇。智源研究院“人工智能的数理基础”方向首席科学家、北京大学张平文院士认为,目前关于人工智能数理基础的研究主要集中在深度学习的数学理论,未来的发展已呈现与数据科学、物理、信息及脑科学等领域融合的趋势,今后甚至可能重构应用数学。当前,人工智能的数理基础这个概念还没有一个明确的定义,在国际上也没有一个明显的领导者,正是年轻人开疆拓土的好时机,应该创造一切机会鼓励我国的青年人投身人工智能数理基础的研究。光启高等研究院副院长、香港浸会大学兼职教授季春霖从自己的研究经历中切实感受到需要把深度学习和物理模型相结合,特别呼吁建立实习生机制,鼓励学界和业界的深度交流。
 
(2)机器学习


机器学习将从研究人工智能算法理论的学科,向工程化学科发展。机器学习作为人工智能领域的重要分支,目前已发展成熟,以深度学习为代表的机器学习算法已全面落地应用。机器学习领军人物、加州大学伯克利分校教授迈克尔·乔丹(Michael Jordan)认为,在下一个十年,机器学习科研工作重心将从研究类人智能机器向开发建造能够处理大规模数据的智能化计算机系统转变。通过这类大型智能系统,将为人类提供更好的决策支持。机器学习研究者需要在下一个十年持续关注算法架构优化、数据样本采样、博弈论、市场设计等领域。

 
加强和发展机器学习的理论研究是当前迫切需求。近年来机器学习的研究已经产生了数以千计的模型、范式和优化算法,在推动机器学习高速发展的同时,也导致机器学习的理解变得困难,急需解决隐私保护、模型可解释性、泛化等问题等方面机器学习理论的不足。卡耐基梅隆大学机器学习系副主任邢波(Eric Xing)教授从损失函数、优化求解、模型体系结构和理论等方面提出了一个系统的、统一的机器学习蓝图,提供了对各种机器学习算法的全新整体理解,并给出以组合方式解决机器学习问题的指导方向。
 
算法突破可解决当前人工智能计算复杂度高、资源消耗巨大的发展困难。哥伦比亚大学电子工程系副教授约翰·莱特(John Wright)认为,突破传统框架的全新高效机器学习算法是当前的研究前沿,算法突破将推动新一代人工智能发展。通过针对非凸优化问题的讨论,用不依赖初始化的简单迭代方法予以解决,在天文学和计算机视觉领域亦有广泛应用。智源研究院“机器学习”方向研究员、北京大学教授林宙辰认为,在传统优化算法的适当部分引入学习机制,可以显著提高算法的收敛速度并得到更好的信息处理效果。基于学习的优化算法能够更好地适应数据,将是传统优化算法的有益补充,建议从事优化算法的研究者多加以关注。
 
缜密人工智能系统将建立新型人机协作关系。人工智能在科学研究生态中已发挥重要作用,但当前主要还是利用数据而不是知识。人工智能促进会(AAAI)现任主席、南加州大学信息科学研究所科研副主任尤兰妲·吉尔(Yolanda Gil)教授提出利用知识技术发展缜密人工智能系统(Thoughtful Artificial Intelligence),通过新型人机协作方式助力科学探索过程,并建议系统满足七项原则:合理性、语境性、主动性、在线性、双向性、系统性、伦理性。
 
(3)智能信息检索与挖掘


搜索与人工智能技术将深度结合,智能搜索要体现“以人为本”理念。加拿大皇家科学院和加拿大工程院院士裴健教授认为,搜索需要理解复杂的用户信息需求,需要大量的人工智能技术支撑,高质量的人工智能算法也需要高效的搜索算法从大规模空间中搜索到最优的参数和模型,搜索技术将在未来人工智能技术发展中扮演重要角色。同时,智能搜索不仅仅是人工智能技术的简单应用,还要考虑每一个“人”(包括老年人、残疾人等)的不同需求,需要在可解释性、文化差异、公平性、隐私保护、安全性、信息准确性、用户适应性等方面进行进一步的探索。
 
开放世界的持续学习具有重要价值。传统的机器学习是一个封闭式的系统,如何让机器能够在开放世界,包括训练数据未覆盖的未知世界进行探索学习,是一个很难但很有意义的问题。北京大学刘兵教授指出,持续学习的核心在于如何引导机器自发进行学习,从而使其面对未知困难时,能根据机器累计的知识,自发地解决困难。主要研究内容包括如何持续解决问题、如何进行自发的知识积累与收集、如何让机器保存记忆、如何更好地让对话参与在整个过程中等。
 
多模态对话式搜索将成为智能信息检索的重要研究方向。现在的信息检索工具(如搜索引擎)不能处理复杂的信息需求,迫切需要新的信息检索工具能够处理更加多样的信息(如图片、视频以及各种模态的数据等),并且能够通过多轮自然语言对话方式解决复杂信息获取问题。新加坡国立大学计算机学院的首任院长蔡达成教授认为,多模态对话和多模态推荐系统的主要技术挑战,在于多模态上下文和历史的建模,领域知识与用户模型的融合,交互方式,评价方法及数据集等。未来搜索、对话和推荐的界限将逐渐消失,融合各种技术的新的信息获取方法应该成为未来研究的重点。
 
(4)智能体系架构与芯片


探索合理的智能超算评测方法,推动大规模智能超算系统的健康发展。智能超算系统是支撑智能时代的重要基础设施,针对智能超算系统,传统高性能计算领域的基准测试(如Linpack)难以高效准确评估智能超算算力,而已有的人工智能基准测试程序(如MLPerf)由于规模固定、结果不直观等原因并不适合智能超算系统的评估。智源研究院“智能体系架构与芯片”方向研究员、清华大学教授陈文光认为,合理的智能算力测试程序应规模可变,具备人工智能意义及多机通信特征,同时测试结果可用单一分数表示。
 
智能计算系统需要系统性创新,形成长期深耕和持久发展意识。智源研究院“智能体系架构与芯片”方向研究员、中科院计算所研究员包云岗认为,智能计算系统的芯片设计是该领域的核心问题,既可以借鉴传统计算系统的设计方法(如软硬件去耦合层次化设计思想),也需要EDA(电子设计自动化)工具和软硬件协同设计平台等方面的创新,应建立贯穿研究、应用、教学、推广等环节的长期深耕和持久发展的创新意识。此外,开源已经成为芯片发展的新趋势,通过敏捷设计方法可以降低芯片设计门槛,打造开源芯片生态。
 
后摩尔时代的算力提升需要以新器件和新架构作为驱动力。摩尔定律带来的计算性能提升日益放缓,基于传统器件的冯诺依曼架构面临存储墙和功耗墙等问题,难以满足智能应用日益增长的算力需求,需要加快推动以神经形态计算为代表的智能体系架构发展。智源青年科学家、北京大学研究员杨玉超提出,可以利用忆阻器的动力学特性来探索新的计算应用,充分发挥神经形态硬件的优势。
 
(5)自然语言处理


基于深度学习的自然语言处理需要建立新的知识体系。这一轮以深度学习为代表的人工智能发展高潮,其代表性技术即为语音识别和自然语言处理。智源研究院“自然语言处理”方向首席科学家、清华大学教授孙茂松指出,在前期快速发展的基础上,目前最前沿的自然语言模型已经进化到具有1500亿个参数,但需要深入思考面向未来的发展方向。下一个十年,在大数据与富知识相结合的双飞轮驱动下,通过多模态信息融合,将建立语言处理和知识表示的新体系。
 
开展多模态融合和多任务学习是推动自然语言处理发展的重要方向。当前的自然语言处理研究的新趋势是进一步融合视觉、听觉、情感等文本之外的信息,交叉进行信息的对齐、互补、融合。华盛顿大学玛丽·奥斯登多尔芙(Mari Ostendorf)教授提出,要将实时物理和社交环境等多模态信息融入语言理解模型。微软亚洲研究院周明博士提出,语言+视觉的多语种多任务联合机器学习将是获得通用语义表征模型的途径。
 
推动大规模开源开放平台建设具有重要意义。算力、算法和数据是推动新一代人工智能发展的核心动力,此外Theaon、Caffe、Kaldi、TensorFlow、PyTorch等开源平台在人工智能发展过程中也起到了关键支撑作用。语音识别开源平台Kaldi创始人、小米集团语音首席科学家丹尼尔·波维(Daniel Povey)认为,建设下一代开源社区是重要的核心任务,将有力推动语音识别和自然语言处理技术快速发展。
 
2. 人工智能其他前沿研究方向发展现状及趋势


(1)机器感知


机器感知目前面临依赖大量训练数据的问题,未来将通过和神经科学等领域结合,发展模拟生物感知模式的新型算法。中国科学院计算技术研究所研究员山世光建议,应重新定义感知计算概念,确定新的研究方向。智源研究院院长、北京大学教授黄铁军认为机器感知的研究需要建立视觉信息处理新理论体系。中国科学院自动化研究所研究员王亮认为,应将融合多种感知数据,实现多模态和多机制融合的感知计算作为重点研究领域,逐步实现从感知到认知计算研究的发展进步。
 
(2)知识智能


深度学习无法对非结构化数据进行处理,不具备理解人类知识的能力。近年来,用于提升人工智能对知识理解和处理能力的知识智能算法发展迅速。目前,知识图谱等相关算法的性能进一步提升,呈现出和深度学习算法加速融合的态势,并逐步走向实际应用。本次大会上,加州大学洛杉矶分校计算机科学系副教授孙怡舟、微软雷德蒙德研究院高级应用科学家东昱晓等分别介绍了在知识图谱、图表示学习的最新研究成果,结果显示可显著提升算法性能表现;智源研究院学术副院长、清华大学长聘教授唐杰提出了针对图数据的机器学习算法框架CogDL;阿里巴巴达摩院资深算法专家杨红霞,斯坦福大学计算机科学副教授、Pinterest首席科学家朱尔·莱思科威克(Jure Leskovec)分别介绍了知识智能领域在智慧医疗、推荐系统等领域的应用落地情况。
 
(3)决策智能


决策智能是研究多个人工智能模型(智能体)相互交互学习,并采取行动的人工智能新领域。决策智能研究对推动人工智能在复杂环境下进行自主学习和决断具有重要意义,但受限于算力资源短缺、真实数据不足等问题,决策智能研究目前仍处于初级发展阶段。针对决策智能研究算力需求大的问题,清华大学交叉信息学院张崇洁教授提出,应设计一种新型算法架构,提升模型计算效率,降低对算力依赖。国际人工智能研发机构OpenAI吴翼研究员则建议,应进一步加大人工智能算力投入,推动企业和科研机构合作,加快通用人工智能等决策智能技术的研发应用。数据方面,中国科学院自动化研究所赵冬斌研究员建议通过设计虚拟环境,模拟真实条件,生成训练数据的方法,减少决策智能算法对数据的依赖。
 
(4)强化学习


强化学习是研究训练人工智能模型通过和环境进行交互,从中学习经验和技能的研究领域。随着算力资源的不断丰富,博弈论、控制论等学科的进一步发展,强化学习已在决策智能领域取得突破,DeepMind、OpenAI等国际人工智能研究机构研发出具备复杂环境决策能力的人工智能算法,在电子竞技中击败人类顶级选手。同时,强化学习已逐渐在智能交通领域应用落地。


未来,强化学习主要面临两方面挑战。一是训练数据不足,强化学习模型性能不佳,难以在的真实场景中应用落地,需要提升模型在数据缺失情况下的性能、安全性和可解释性。二是强化学习算力需求大,需要充足的算力资源支持。
 
(5)图神经网络


图神经网络结合了深度学习算法和图表示学习算法的优点,具有高性能、能够处理非结构化数据的优点,目前已进入快速发展期,出现了图卷积神经网络等一系列研究成果,并在推荐系统、信息检索、自然语言处理等领域得到应用。未来,图神经网络将和深度学习技术加快融合,结合深度学习跨领域预训练和自监督学习方法,提升在多种应用场景下的性能,以及模型的对抗攻击能力。同时,图神经网络将借鉴贝叶斯网络、马尔科夫随机场等非深度学习算法,进一步探究模型的因果推理能力。
 
(6)认知神经基础


深度学习具有缺乏可解释性的问题。通过研究神经科学和认知科学,通过将认知神经科学研究成果迁移到人工智能理论研究领域,有助于理解人工智能内部的计算过程,提升模型可解释性,并为发展新型人工智能算法提供理论基础。目前。北京师范大学毕彦超教授和北京大学方方教授已开展人脑视觉神经信号处理和认知模式研究,用于理解人类智能的形成机制。北京师范大学刘嘉教授提出,通过类脑与人脑双脑融合理论范式,理解智能的本质。北京大学吴思教授和中科院自动化所余山研究员提出发展脑启发的新型学习算法和网络结构设计方案。
 
(7)海外青年论坛


本次智源大会特设了海外青年论坛,邀请机器学习领域的青年才俊们围绕机器学习前沿研究开展研讨,包括:斯坦福大学助理教授马腾宇,杜克大学助理教授鬲融,普林斯顿大学助理教授金驰,宾夕法尼亚大学沃顿商学院助理教授苏炜杰,斯坦福大学博士后雷理骅等。与会人员们认为在机器学习领域,以下几个方面非常值得关注:
 
第一,元学习、自学习算法都是机器学习领域未来非常重要的研究方向;

第二,机器学习技术的优化将有利于其在数据隐私保护领域的应用;

第三,因果推断问题是人工智能领域非常重要的问题;

第四,优化算法的隐式趋势分析也是机器学习领域需要关注的研究方向。




点击阅读原文可查看原文及附件

内容来源:北京智源人工智能研究院

内容编辑:北京科技政策宣讲团